题目内容
把下列各式分解因式:
(1)a4-b4;
(2)4mn2-4m2n-n2;
(3)(x2+x+1)(x2+x)+
;
(4)x4-12x2+36.
(1)a4-b4;
(2)4mn2-4m2n-n2;
(3)(x2+x+1)(x2+x)+
| 1 |
| 4 |
(4)x4-12x2+36.
(1)原式=(a2+b2)(a2-b2)=(a2+b2)(a+b)(a-b);
(2)原式=-n(4m2-4mn+n);
(3)原式=(x2+x)2+(x2+x)+
=(x2+x+
)2;
(4)原式=(x2-6)2=(x+
)2(x-
)2.
(2)原式=-n(4m2-4mn+n);
(3)原式=(x2+x)2+(x2+x)+
| 1 |
| 4 |
| 1 |
| 2 |
(4)原式=(x2-6)2=(x+
| 6 |
| 6 |
练习册系列答案
相关题目