题目内容
已知a﹣2b=3,则3(a﹣b)﹣(a+b)的值为( )
A. 3 B. 6 C. ﹣3 D. ﹣6
已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( )
A. 8.23×10﹣6 B. 8.23×10﹣7 C. 8.23×106 D. 8.23×107
图1是某娱乐节目中一个游戏环节的录制现场,场地由等边△ADE和正方形ABCD组成,正方形ABCD两条对角线交于点O,在AD的中点P处放置了一台主摄像机.游戏参与者行进的时间为x,与主摄像机的距离为y,若游戏参与者匀速行进,且表示y与x的函数关系式大致如图2所示,则游戏参与者的行进路线可能是( )
A. A→O→D B. E→A→C C. A→E→D D. E→A→B
计算:
(1)﹣18×();
(2)(﹣1)3﹣(1﹣)÷3×[2﹣(﹣3)2].
如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为( )
A. 8064 B. 8067 C. 8068 D. 8072
在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cos∠PCB的值;
③当BP=9时,求BE•EF的值.
先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.
如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)求证:①AB=AD; ②CD平分∠ACE.
(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是( )
A. abc<0 B. a+c<b C. b2+8a>4ac D. 2a+b>0