ÌâÄ¿ÄÚÈÝ
| 4 | 3 |
£¨1£©ÇóÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©Óú¬tµÄ´úÊýʽ±íʾµãD£¬µãEµÄ×ø±ê£»
£¨3£©µ±ÒÔO¡¢D¡¢EÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬Çó¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£¨Ö»ÐèÇó³öÒ»Ìõ¼´¿É£©£®
·ÖÎö£º£¨1£©ÔÚRt¡÷AOCÖУ¬ÒÑÖªAOµÄ³¤ÒÔ¼°¡ÏCAOµÄÕýÇÐÖµ£¬ÄÜÇó³öOCµÄ³¤£¬¼´¿ÉÈ·¶¨µãCµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨ÄÜÇó³öÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©¹ýµãD×÷AO¡¢OCµÄ´¹Ïߣ¬ÔòÓС÷ADF¡×¡÷DCH¡×¡÷ACO£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öµãDµÄ×ø±ê£¬¸ù¾ÝOE=OC-CEÇó³öµãEµÄ×ø±ê£»
£¨3£©µ±ÒÔO¡¢D¡¢EÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬¿ÉÄÜ¡ÏDOE=90¡ã»ò¡ÏDEO=90¡ã»ò¡ÏODE=90¡ã£¬¶øµ±¡ÏDOE=90¡ã»ò¡ÏDEO=90¡ãʱ£¬ÏÔÈ»¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏß²»´æÔÚ£¬¹ÊÖ»ÄÜÊÇ¡ÏODE=90¡ã£¬¸ù¾ÝÁ½½Ç¶ÔÓ¦ÏàµÈµÄÁ½Èý½ÇÐÎÏàËÆµÃ³ö¡÷OHD¡×¡÷DHE£¬ÓÉÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýµÃµ½DH2=EH•OH£¬½«DH=3-
t£¬OH=
t£¬EH=4-
t´úÈ룬µÃµ½¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì19t2-34t+15=0£¬½â·½³ÌÇó³öt1=1£¬t2=
£¬µÃµ½¶ÔÓ¦µÄD¡¢EÁ½µãµÄ×ø±ê£¬ÔËÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©¹ýµãD×÷AO¡¢OCµÄ´¹Ïߣ¬ÔòÓС÷ADF¡×¡÷DCH¡×¡÷ACO£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýÇó³öµãDµÄ×ø±ê£¬¸ù¾ÝOE=OC-CEÇó³öµãEµÄ×ø±ê£»
£¨3£©µ±ÒÔO¡¢D¡¢EÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬¿ÉÄÜ¡ÏDOE=90¡ã»ò¡ÏDEO=90¡ã»ò¡ÏODE=90¡ã£¬¶øµ±¡ÏDOE=90¡ã»ò¡ÏDEO=90¡ãʱ£¬ÏÔÈ»¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏß²»´æÔÚ£¬¹ÊÖ»ÄÜÊÇ¡ÏODE=90¡ã£¬¸ù¾ÝÁ½½Ç¶ÔÓ¦ÏàµÈµÄÁ½Èý½ÇÐÎÏàËÆµÃ³ö¡÷OHD¡×¡÷DHE£¬ÓÉÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀýµÃµ½DH2=EH•OH£¬½«DH=3-
| 9 |
| 5 |
| 12 |
| 5 |
| 17 |
| 5 |
| 15 |
| 19 |
½â´ð£º½â£º£¨1£©ÔÚRt¡÷AOCÖУ¬¡ß¡ÏAOC=90¡ã£¬
¡àCO=AO•tan¡ÏCAO=AO•tan¡ÏACB=4£¬
ÔòA£¨0£¬3£©£¬C£¨4£¬0£©£®
ÉèÖ±ÏßACµÄ½âÎöʽΪ£ºy=kx+3£¬´úÈëCµã×ø±ê£¬
µÃ£º4k+3=0£¬k=-
£®
¹ÊÖ±ÏßACµÄ½âÎöʽΪ£ºy=-
x+3£»
£¨2£©¹ýµãD×÷DF¡ÍAO£¬DH¡ÍCO£¬´¹×ã·Ö±ðΪF£¬H£¬
ÔòÓС÷ADF¡×¡÷DCH¡×¡÷ACO£¬
¡àAD£ºDC£ºAC=AF£ºDH£ºAO=FD£ºHC£ºOC£¬
¡ßAD=3t£¨ÆäÖÐ0¡Üt¡Ü
£©£¬OC=AB=4£¬AC=5£¬
¡à3t£º£¨5-3t£©£º5=AF£ºDH£º3=FD£ºHC£º4£¬
¡àFD=
t£¬AF=
t£¬DH=3-
t£¬HC=4-
t£¬
¡àµãDµÄ×ø±êΪ£¨
t£¬3-
t£©£®
¡ßCE=t£¬
¡àOE=OC-CE=4-t£¬
¡àµãEµÄ×ø±êΪ£¨4-t£¬0£©£»
£¨3£©µ±ÒÔO¡¢D¡¢EÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬¡ÏODE=90¡ã£¬¡ÏDOH=¡ÏEDH£¬
ÓÖ¡ß¡ÏOHD=¡ÏDHE=90¡ã£¬
¡à¡÷OHD¡×¡÷DHE£¬
¡àDH£ºEH=OH£ºDH£¬¼´DH2=EH•OH£¬
¡ßDH=3-
t£¬OH=FD=
t£¬EH=CH-CE=4-
t£¬
¡à£¨3-
t£©2=£¨4-
t£©•
t£¬
¼´£º19t2-34t+15=0£¬
t1=1£¬t2=
£®
¢Ùµ±t=1ʱ£¬D£¨
£¬
£©£¬E£¨3£¬0£©£®
Éè¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx£¬
½«D¡¢EÁ½µãµÄ×ø±ê´úÈ룬µÃ
£¬
½âµÃ
£¬
¡ày=-
x2+
x£»
¢Úµ±t2=
ʱ£¬Í¬Àí¿ÉµÃy=-
x2+
x£®
£¨ÒÔÉÏ¢Ù¢Ú½â³öÒ»ÖÖ¼´¿É£©
¡àCO=AO•tan¡ÏCAO=AO•tan¡ÏACB=4£¬
ÔòA£¨0£¬3£©£¬C£¨4£¬0£©£®
ÉèÖ±ÏßACµÄ½âÎöʽΪ£ºy=kx+3£¬´úÈëCµã×ø±ê£¬
µÃ£º4k+3=0£¬k=-
| 3 |
| 4 |
¹ÊÖ±ÏßACµÄ½âÎöʽΪ£ºy=-
| 3 |
| 4 |
ÔòÓС÷ADF¡×¡÷DCH¡×¡÷ACO£¬
¡àAD£ºDC£ºAC=AF£ºDH£ºAO=FD£ºHC£ºOC£¬
¡ßAD=3t£¨ÆäÖÐ0¡Üt¡Ü
| 5 |
| 3 |
¡à3t£º£¨5-3t£©£º5=AF£ºDH£º3=FD£ºHC£º4£¬
¡àFD=
| 12 |
| 5 |
| 9 |
| 5 |
| 9 |
| 5 |
| 12 |
| 5 |
¡àµãDµÄ×ø±êΪ£¨
| 12 |
| 5 |
| 9 |
| 5 |
¡ßCE=t£¬
¡àOE=OC-CE=4-t£¬
¡àµãEµÄ×ø±êΪ£¨4-t£¬0£©£»
£¨3£©µ±ÒÔO¡¢D¡¢EÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐÎʱ£¬¡ÏODE=90¡ã£¬¡ÏDOH=¡ÏEDH£¬
ÓÖ¡ß¡ÏOHD=¡ÏDHE=90¡ã£¬
¡à¡÷OHD¡×¡÷DHE£¬
¡àDH£ºEH=OH£ºDH£¬¼´DH2=EH•OH£¬
¡ßDH=3-
| 9 |
| 5 |
| 12 |
| 5 |
| 17 |
| 5 |
¡à£¨3-
| 9 |
| 5 |
| 17 |
| 5 |
| 12 |
| 5 |
¼´£º19t2-34t+15=0£¬
t1=1£¬t2=
| 15 |
| 19 |
¢Ùµ±t=1ʱ£¬D£¨
| 12 |
| 5 |
| 6 |
| 5 |
Éè¾¹ýO¡¢D¡¢EÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx£¬
½«D¡¢EÁ½µãµÄ×ø±ê´úÈ룬µÃ
|
½âµÃ
|
¡ày=-
| 5 |
| 6 |
| 5 |
| 2 |
¢Úµ±t2=
| 15 |
| 19 |
| 19 |
| 30 |
| 61 |
| 30 |
£¨ÒÔÉÏ¢Ù¢Ú½â³öÒ»ÖÖ¼´¿É£©
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÔËÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÆäÖУ¨3£©ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿