题目内容
如图,点C、E和点B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=12°,则∠GEF=________度.
60
分析:根据三角形内角和定理,三角形外角和内角的关系以及等腰三角形的性质,逐步推出∠GEF的度数.
解答:∵∠A=12°,AB=BC,
∴∠A=∠ACB=12°,∠CBD=∠A+∠ACB=12°+12°=24°;
∵BC=CD,
∴∠CBD=∠CDB=24°,
∴∠ECD=∠A+∠CDA=36°(外角定理);
∵CD=DE,
∴∠DCE=∠DEC=36°,
∴∠EDF=∠A+∠AED=48°;
又∵DE=EF,
∴∠EDF=∠EFD=48°,
∴∠GEF=∠A+∠EFD=12°+48°=60°.
故答案是:60.
点评:本题综合考查了等腰三角形的性质、三角形内角和定理、三角形外角性质.此类题考生应该注意的是三角形内角和定理、外角性质的运用.
分析:根据三角形内角和定理,三角形外角和内角的关系以及等腰三角形的性质,逐步推出∠GEF的度数.
解答:∵∠A=12°,AB=BC,
∴∠A=∠ACB=12°,∠CBD=∠A+∠ACB=12°+12°=24°;
∵BC=CD,
∴∠CBD=∠CDB=24°,
∴∠ECD=∠A+∠CDA=36°(外角定理);
∵CD=DE,
∴∠DCE=∠DEC=36°,
∴∠EDF=∠A+∠AED=48°;
又∵DE=EF,
∴∠EDF=∠EFD=48°,
∴∠GEF=∠A+∠EFD=12°+48°=60°.
故答案是:60.
点评:本题综合考查了等腰三角形的性质、三角形内角和定理、三角形外角性质.此类题考生应该注意的是三角形内角和定理、外角性质的运用.
练习册系列答案
相关题目