题目内容

如图,A,D,F,B在同一直线上,AD=BF,AE=BC,且AE∥BC,求证:∠AFE=∠BDC.
分析:由于AE∥BC,根据平行线的性质可得∠A=∠B,又AD=BF,根据等式性质可得AF=BD,再结合AE=BC,利用SAS可证△AEF≌△BCD,于是∠AFE=∠BDC,
解答:证明:∵AE∥BC,
∴∠A=∠B,
∵AD=BF,
∴AD+DF=BF+DF,
∴AF=BD,
在△AEF和△BCD中,
AE=BC
∠A=∠B
AF=BD

∴△AEF≌△BCD(SAS),
∴∠AFE=∠BDC.
点评:本题考查了全等三角形的判定和性质、平行线的判定和性质,解题的关键是找出SAS所需要的三个条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网