题目内容
方程实数根的个数是( )
A. 0 B. 1 C. 2 D. 3
阅读下面材料,解答后面问题:
在数学课上,老师提出如下问题:
已知:Rt△ABC,∠ABC=90°.
求作:矩形ABCD.
小敏的作法如下:
①作线段AC的垂直平分线交AC于点O;
②连接BO并延长,在延长线上截取OD=BO;
③连接DA,DC.
则四边形ABCD即为所求.
判断小敏的作法是否正确?若正确,请证明;若不正确,请说明理由.
将两个底边相等的等腰三角形按照图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ( )
A. 有两组邻边相等的四边形称为“筝形”;
B. 有两组对角分别相等的四边形称为“筝形”;
C. 两条对角线互相垂直的四边形称为“筝形”;
D. 以一条对角线所在直线为对称轴的四边形称为“筝形”.
为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有_______名学生“骑共享单车上学”.
计算:______.
2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车1小时各运多少吨垃圾?
若2x+y=3,则4x·2y=_____________.
列方程解应用题:
某车间有32名工人,每人每天可加工甲种零件10个或乙种零件8个。在这32名工人中,一部分工人加工甲种零件,其余的加工乙种零件,已知每加工一个甲种零件可获利35元,每加工一个乙种零件可获利50元。若此车间这一天一共获利12200元,求这一天加工乙种零件工人的人数。
若关于、的方程是二元一次方程,则_______