题目内容
A.1.6
B.2.5
C.3
D.3.4
【答案】分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.
解答:解:连接EC,由矩形的性质可得AO=CO,
又因EO⊥AC,
则由线段的垂直平分线的性质可得EC=AE,
设AE=x,则ED=AD-AE=5-x,
在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,
即x2=(5-x)2+32,
解得x=3.4.
故选D.
点评:本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.
解答:解:连接EC,由矩形的性质可得AO=CO,
又因EO⊥AC,
则由线段的垂直平分线的性质可得EC=AE,
设AE=x,则ED=AD-AE=5-x,
在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,
即x2=(5-x)2+32,
解得x=3.4.
故选D.
点评:本题考查了利用线段的垂直平分线的性质、矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.
练习册系列答案
相关题目
A、a≥
| ||
| B、a≥b | ||
C、a≥
| ||
| D、a≥2b |