题目内容
生物学家发现一种病毒的长度约为0.0000037毫米,数据0.0000037用科学记数法表示的结果为( )
A.3.7× B.37× C.3.7× D.0.37×
在平面直角坐标系中,□OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向右平移,经过____________秒该直线可将□OABC的面积平分.
下列运算正确的是( )
A.+= B.2-=1 C.·= D.÷=
在△中,,如图甲是的中点,∥,则= ,如图乙,、 是的三等分点,∥∥,则+= ,如图丙,、、…、是的等分点,∥∥∥…∥,则+++…+ .
已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程正确的是( )
A. B.
C. D.
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
计算:.
设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数,当x=1时,y=3;当x=3时,y=1,即当时,有,所以说函数是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y=是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数()是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).
若是关于x的方程的解,则= .