题目内容
| 10 |
| x |
| 6 |
| x |
分析:根据反比例函数y=
(k≠0)中比例系数k的几何意义得到S△BOD=
×6=3,S△AOC=
×10=5,则S1=S△BOD-S△EOD=3-S△EOD,S2=S△AOC-S△EOD=5-S△EOD,然后计算S2-S1.
| k |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:根据题意得S△BOD=
×6=3,S△AOC=
×10=5,
∴S1=S△BOD-S△EOD=3-S△EOD,S2=S△AOC-S△EOD=5-S△EOD,
∴S2-S1=5-S△EOD-(3-S△EOD)=2.
故选B.
| 1 |
| 2 |
| 1 |
| 2 |
∴S1=S△BOD-S△EOD=3-S△EOD,S2=S△AOC-S△EOD=5-S△EOD,
∴S2-S1=5-S△EOD-(3-S△EOD)=2.
故选B.
点评:本题考查了反比例函数y=
(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.
| k |
| x |
练习册系列答案
相关题目
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
⑵如图3,⊙
内有一点
,请用尺规作图画出点
的反演点
;(保留画图痕迹,不必写画法).
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
的半径为
,另一个半径为
的⊙
,作射线
交⊙
于点
、
,点
、
关于⊙
的反演点分别是
、
,点
为⊙
上另一点,关于⊙
的反演点为
.求证:∠
=90°.
⑴如图2,⊙
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆
(12分)如图1,在平面上,给定了半径为
的⊙
,对于任意点
,在射线
上取一点
,使得
·
=
,这种把点
变为点
的变换叫做反演变换,点
与点
叫做互为反演点,⊙
称为基圆.
⑴如图2,⊙
内有不同的两点
、
,它们的反演点分别是
、
,则与∠
一定相等的角是( ▲ )
| A.∠ | B.∠ | C.∠ | D.∠ |
⑶如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆