题目内容
25、如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形边长是多少?
(2)请用两种不同的方法求图(2)阴影部分的面积;
(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?
三个代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a-b)2的值.

(1)你认为图(2)中的阴影部分的正方形边长是多少?
(2)请用两种不同的方法求图(2)阴影部分的面积;
(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?
三个代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a-b)2的值.
分析:(1)观察可得阴影部分的正方形边长是m-n;
(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;
方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;
(3)由(2)可得结论(m+n)2=(m-n)2+4mn;
(4)由(a-b)2=(a+b)2-4ab求解.
(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;
方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;
(3)由(2)可得结论(m+n)2=(m-n)2+4mn;
(4)由(a-b)2=(a+b)2-4ab求解.
解答:解:(1)阴影部分的正方形边长是m-n.
(2)阴影部分的面积就等于边长为m-n的小正方形的面积,
方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,
即(m-n)2=(m+n)2-4mn;
方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,
即(m-n)2=(m+n)2-2m•2n=(m+n)2-4mn;
(3)(m+n)2=(m-n)2+4mn.
(4)(a-b)2=(a+b)2-4ab=49-4×5=29.
(2)阴影部分的面积就等于边长为m-n的小正方形的面积,
方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,
即(m-n)2=(m+n)2-4mn;
方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,
即(m-n)2=(m+n)2-2m•2n=(m+n)2-4mn;
(3)(m+n)2=(m-n)2+4mn.
(4)(a-b)2=(a+b)2-4ab=49-4×5=29.
点评:本题考查了完全平方公式的几何意义,认真观察图形以及掌握正方形、长方形的面积公式计算是关键.
练习册系列答案
相关题目