题目内容
化简;
(1)
(2).
如果a=3b(a≠0),则的值为_______.
现在规定两种新的运算“﹡”和“◎”:a﹡b=;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]=__________.
下列关系式中,正确的是( )
A. B.
C. D.
当a为何值时, 的解是负数?
已知,则的值等于__________.
某市为解决部分市民冬季集中取暖问题需铺设一条长米的管道,为尽量减少施工对交通造成的影响,施工时对“”,设实际每天铺设管道米,则可得方程.根据此情景,题中用“”表示的缺失的条件应补为( ).
A. 每天比原计划多铺设米,结果延期天才完成
B. 每天比原计划少铺设米,结果延期天才完成
C. 每天比原计划多铺设米,结果提前天才完成
D. 每天比原计划少铺设米,结果提前天才完成
菱形ABCD中, ,其周长为32,则菱形面积为____________.
【答案】
【解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详【解析】∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为: =.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
【题型】填空题【结束】17
如图,在△ABC中, , AC=BC=3, 将△ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.
﹣的绝对值为( )
A. ﹣2 B. ﹣ C. D. 1