题目内容

【题目】如图,在△ABC中,∠ABC和∠ACB的平分线BE、CF相交于点P.

(1)若∠ABC=70°,∠ACB=50°,则∠BPC=°;
(2)求证:∠BPC=180°﹣ (∠ABC+∠ACB);
(3)若∠A=α,求∠BPC的度数.

【答案】
(1)120
(2)解:证明:∵∠ABC和∠ACB的平分线BE、CF相交于点P,

∴∠PBC= ∠ABC,∠PCB= ∠ACB,

∵∠BPC+∠PBC+∠PCB=180°,

∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣( ∠ABC+ ∠ACB)=180°﹣ (∠ABC+∠ACB),

∴∠BPC=180°﹣ (∠ABC+∠ACB)


(3)解:解:在△ABC中,∠A+∠ABC+∠ACB=180°,

∴∠ABC+∠ACB=180°﹣∠A,

∵由(2)可知:∠BPC=180°﹣ ∠ABC+∠ACB),

∴∠BPC=180°﹣ (180°﹣∠A),

∵∠A=α,

∴∠BPC=180°= (180°﹣α)=90°+


【解析】

①根据已知条件求出∠ABC+∠ACB,再根据角平分线的定义求出∠BPC+∠PCB,然后利用三角形的内角和等于180°列出计算.

②根据三角形的内角和和角平分线的定义即可得出结论.

③根据三角形的内角和和角平分线的定义即可.

【考点精析】根据题目的已知条件,利用三角形的内角和外角的相关知识可以得到问题的答案,需要掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网