题目内容
【题目】如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.![]()
(1)求a,b的值;
(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM//OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR//MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.
【答案】
(1)
解:
∵y=﹣x+4与x轴交于点A,
∴A(4,0),
∵点B的横坐标为1,且直线y=﹣x+4经过点B,
∴B(1,3),
∵抛物线y=ax2+bx经过A(4,0),B(1,3),
∴
,解得:
,
∴a=﹣1,b=4;
(2)
解:方法一:
如图,作BD⊥x轴于点D,延长MP交x轴于点E,
![]()
∵B(1,3),A(4,0),
∴OD=1,BD=3,OA=4,
∴AD=3,
∴AD=BD,
∵∠BDA=90°,∠BAD=∠ABD=45°,
∵MC⊥x轴,∴∠ANC=∠BAD=45°,
∴∠PNF=∠ANC=45°,
∵PF⊥MC,
∴∠FPN=∠PNF=45°,
∴NF=PF=t,
∵∠PFM=∠ECM=90°,
∴PF//EC,
∴∠MPF=∠MEC,
∵ME//OB,∴∠MEC=∠BOD,
∴∠MPF=∠BOD,
∴tan∠BOD=tan∠MPF,
∴
=
=3,
∴MF=3PF=3t,
∵MN=MF+FN,
∴d=3t+t=4t;
方法二:
延长MP交x轴于点M′,作M′N′//MN交AB于N′,
延长FP交M′N′于F′,∵M′N′//MN,∴△PMN∽△PM′N′,
![]()
∴
,∵O(0,0),B(1,3),
∴KOB=3,
∵PM//OB,
∴KPM=KOB=3,则lPM:y=3x+b,设P(p,﹣p+4),则b=4﹣4p,
∴lPM:y=3x+4﹣4P,把y=0代入,∴x=
,
∴M′(
,0),
∵N′x=M′x,把x=
代入y=﹣x+4,
∴y=
,
∴N′(
,
),∴M′N′=
,
∵PF′⊥M′N′,
∴PF′=p﹣
=
,
∴
.
(3)
解:方法一:
如备用图,由(2)知,PF=t,MN=4t,
∴S△PMN=
MN×PF=
×4t×t=2t2,
∵∠CAN=∠ANC,
∴CN=AC,
∴S△ACN=
AC2,
∵S△ACN=S△PMN,
∴
AC2=2t2,
∴AC=2t,
∴CN=2t,
∴MC=MN+CN=6t,
∴OC=OA﹣AC=4﹣2t,
∴M(4﹣2t,6t),
由(1)知抛物线的解析式为:y=﹣x2+4x,
将M(4﹣2t,6t)代入y=﹣x2+4x得:
﹣(4﹣2t)2+4(4﹣2t)=6t,
解得:t1=0(舍),t2=
,
∴PF=NF=
,AC=CN=1,OC=3,MF=
,PN=
,PM=
,AN=
,
∵AB=3
,
∴BN=2
,
作NH⊥RQ于点H,
∵QR//MN,
∴∠MNH=∠RHN=90°,∠RQN=∠QNM=45°,
∴∠MNH=∠NCO,
∴NH//OC,
∴∠HNR=∠NOC,
∴tan∠HNR=tan∠NOC,
∴
=
=
,
设RH=n,则HN=3n,
∴RN=
n,QN=3
n,
∴PQ=QN﹣PN=3
n﹣
,
∵ON=
=
,
OB=
=
,
∴OB=ON,∴∠OBN=∠BNO,
∵PM//OB,
∴∠OBN=∠MPB,
∴∠MPB=∠BNO,
∵∠MQR﹣∠BRN=45°,∠MQR=∠MQP+∠RQN=∠MQP+45°,
∴∠BRN=∠MQP,
∴△PMQ∽△NBR,
∴
=
,
∴
=
,
解得:n=
,
∴R的横坐标为:3﹣
=
,R的纵坐标为:1﹣
=
,
∴R(
,
).
![]()
方法二:设M(t,﹣t2+4t),N(t,﹣t+4),
∴MN=﹣t2+4t+t﹣4=﹣t2+5t﹣4,
∴PF=
(﹣t2+5t﹣4),
∴S△PMN=
(﹣t2+5t﹣4)2=
(t﹣4)2(t﹣1)2,
∵KAB=﹣1,∴∠OAB=45°,
∴CA=CN=4﹣t,
∴S△ACN=
(t﹣4)2,
∵S△ACN=S△PMN,
∴
(t﹣4)2(t﹣1)2=
(t﹣4)2,
∴t1=﹣1,(舍),t2=3,
∴M(3,3),
∵MX=NX=3,
∴N(3,1),
∴ON=
,
∵B(1,3),
∴OB=
,
∴OB=ON,∠OBN=∠ONB,
∵OB//MP
∴∠OBN=∠QPM,
∴∠ONB=∠QPM,∠RQA=45°,
∵∠MQR﹣∠BRN=45°,
∴∠BRN=∠MQP,
∴△BRN∽△MQP,
∴
,
∵KPM=3,M(3,3),
∴lPM:y=3x﹣6,
∵lAB:y=﹣x+4,
∴P(2.5,1.5),
设R(3t,t),
∴Q(3t,﹣3t+4),
∴
,
∴t1=
,t2=
(舍),
∴R(
,
).
![]()
【解析】(1)利用已知得出A,B点坐标,进而利用待定系数法得出a,b的值;(2)已知MN=d,PF=t,由图可知MN=MF+FN,不妨将MF和FN用PF代替,即可得到MN与PF的关系:利用45°的直角三角形和平行线性质可推得FN=PF=t,∠MPF=∠BOD,再利用tan∠BOD=tan∠MPF,得
=
=3,从而有MF=3PF=3t,从而得出d与t的函数关系;(3)过点N作NH⊥QR于点H,由图象可知R点横坐标为OC﹣HN,纵坐标为CN﹣RH.OC=OA﹣AC,其中OA已知,利用S△ACN=S△PMN求得AC=2t,再将用t表示的M点坐标代入抛物线解析式求得t值,即得AC的值,又由(2)中AC=CN,可知CN,则求得HN和RH的值是关键.根据tan∠HNR=tan∠NOC,可得
=
=
,设RH=n,HN=3n,勾股定理得出RN的值,再利用已知条件证得△PMQ∽△NBR,建立比例式求得n值,即可得出HN和RH的值,从而得到R的坐标.
【题目】甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数
与方差s2如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均数 | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A. 甲 B. 乙 C. 丙 D. 丁