题目内容
如图,矩形ABCD中,AD=3cm,AB=2cm,点E沿A→D方向移动,点F沿D→A方向移动,速
度都是1cm/s.如果E、F两点同时移动,且当E、F两点相遇即停止.设移动时间是t(s).
(1)当BE与CF所在直线的夹角是60°时,t是多少?
(2)当四边形BCFE的对角线BF与CE的夹角是90°时,t是多少?
(3)当△ABE的外接圆与△CDF的外接圆外切时,t是多少?
∵速度都是1cm/s.
∴BE=CF,
∴GE=GF,
∴∠AEB=∠GEF=∠EGF=∠GFE=60°,
∵四边形ABCD为矩形,
∴AE=AB÷tan∠AEB=2
∴当t=
(2)如图2,四边形BCFE的对角线BF与CE的夹角是90°时,
∵BE=CF,
∴∠EBC=∠FCB
∴△EBC≌△FCB
∴∠BEC=∠CFB
∴△BEG∽△CFG
∴CG=BG,
∵∠BGC=90°,
∴∠FBC=∠ABF=45°,
∴AF=AB=2,DF=1
∵移动速度速度为1cm/s,
∴当t=1时,四边形BCFE的对角线BF与CE的夹角是90°.
(3)如图3,当△ABE的外接圆与△CDF的外接圆外切时,
∵四边形ABCD是矩形,
∴两圆的直径分别为AE和CF,
∴BE=CF=
∵AE=DF=t,
∴EF=3-2t,
∴MN=(3-2t+3)÷2=3-t,
∴
解得:t=
∴当t=
分析:(1)利用等边三角形的性质可以得到∠AEB=60°,再利用解直角三角形的知识表示出AE的长即可;
(2)利用矩形的性质两个动点运动速度相同可以得到∠FBC=∠ECB=45°,从而得到AF=DE=AB;
(3)当两圆向外切时,两圆的圆心距等于EF与BC和的一半.
点评:本题考查了相切两圆的性质、全等三角形的性质及判定、勾股定理及矩形、等腰梯形的性质,解决动点问题的关键是化动为静.
练习册系列答案
相关题目
A、a≥
| ||
| B、a≥b | ||
C、a≥
| ||
| D、a≥2b |