题目内容
如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数 的图象上,则△OAB的面积等于( )
A. 2 B. 3 C. 4 D. 6
如图,已知∠EFD=∠BCA,BC=EF,AF=DC。线段 AB和线段DE平行吗?请说明理由。
反比例函数的图像经过, 两点,其中,且,则的范围是_________.
如图,在口ABCD中,点E、F是对角线BD上的两点,且BF=DE,连接AE、CF.
.求证:AE//CF.
【答案】证明见解析
【解析】试题分析:根据平行四边形的性质可得AD=CB,∠ADE=∠CBF,利用SAS判定△ADE≌△CBF,根据全等三角形的性质即可得∠AED=∠BFC,所以AE∥CF.
试题解析:
∵四边形ABCD是平行四边形,
∴AD=CB,AD∥CB,
∴∠ADE=∠CBF,
又∵DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠BFC,
∴AE∥CF.
【题型】解答题【结束】22
如图,已知是 的直径,CD与 相切于C, .
(1)求证:BC 是的平分线.
(2)若DC=8, 的半径OA=6,求CE的长.
一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.
如图, , 交于点, 平分,交于. 若,则 的度数为( )
A. 35o B. 45o C. 55o D. 65o
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?
(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?
(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
若代数式有意义,则实数x的取值范围是( )
A. x≠1 B. x≥0 C. x>0 D. x>0且x≠1
如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,记△ABP的面积为S1,△QMN的面积为S2,则S1__S2(填“>”“<”或“=”).