题目内容
【题目】如图一:在Rt△ABC中,∠C=90°AD、BE分别是△ABC中∠A、∠B的平分线,AD、BE交于点F,过F点做FH⊥AD交AC于点H,易证:AH+DB=AB;
(1)若将Rt△ABC中∠BAC、∠ABC的内角平分线改成外角平分线,即:AF、BF分别是∠BAC、∠ABC的外角平分线交于F点,FH⊥AF交直线AC于H点,如图二:请写出线段AH、BD、AB之间的数量关系,并证明。
(2)若将Rt△ABC中∠BAC、∠ABC的内角平分线改成一个是外角平分线,即:AF是∠A的内角平分线,BE是∠B的外角平分线交于F点,FH⊥AD交AC于点H.如图三:请写出线段AH、BD、AB之间的数量关系,无需证明。
![]()
【答案】(1) AH=AB+BD ,证明见解析;(2) AH=AB+BD
【解析】(1)的结论是:AH=AB+BD
(2)的结论是:AH=AB+BD
(1)的结论证明如下:
∵AF平分∠BAH
∴∠BAF=∠HAF
∵AF⊥HM
∴△HAF≌△MAF
∴AH=AM ∠AHF=∠M
∵AF平分∠BAH
∴∠ABF=∠FBN
∵∠AHF+∠HAF=90°
∵∠DAC+∠ADB=90°
∴∠ADB=∠AHF
∴∠FDB=∠BMF
∴△DFB≌△MFB
∴DB=BM
∵AM=AB+BM
∴AH=AB+DB
【题目】为建设秀美龙江,某学校组织师生参加一年一度的植树绿化工作,准备租用7辆客车,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车x辆,租车总费用为y元,
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 60 | 40 |
租金/(元/辆) | 360 | 300 |
(1)求出y(单位:元)与x(单位:辆)之间的函数关系式。
(2)若该校共有350名师生前往参加劳动,共有多少种租车方案?
(3)带队老师从学校预支租车费用2400元,试问预支的租车费用是否可有结余?若有结余,最多可结余多少元。