题目内容
如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:
(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确( )

(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确( )
| A.两人都正确 | B.两人都错误 |
| C.甲正确,乙错误 | D.甲错误,乙正确 |
甲错误,乙正确.
证明:甲:虽然CP=
| 1 |
| 2 |
但∠A≠
| 1 |
| 2 |
即∠A≠∠ACD.
乙:∵CP是线段AB的中垂线,
∴△ABC是等腰三角形,即AC=BC,∠A=∠B,
作AC、BC之中垂线分别交AB于D、E,
∴∠A=∠ACD,∠B=∠BCE,
∵∠A=∠B,
∴∠A=∠ACD,∠B=∠BCE,
∵AC=BC,
∴△ACD≌△BCE,
∴AD=EB,
∵AD=DC,EB=CE,
∴AD=DC=EB=CE.
故选D.
练习册系列答案
相关题目