题目内容
计算:_________________.
方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=____.
在中, , , 三边的长分别为, , ,求这个三角形的面积.
小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中
画出格点△ABC中,(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需要△ABC高,借用网格就能计算出它的面积.
(1)△ABC的面积为 ;
(2)如果△MNP三边的长分别为, , ,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积为 .
适合下列条件的△ABC中,直角三角形的个数为( )
①a=,b=,c= ②a=6,∠A=45°; ③∠A=32°,∠B=58°;
④a=7,b=24,c=25 ⑤a=2,b=2,c=4.
A. 2个 B. 3个 C. 4个 D. 5个
和的大小关系是( )
A. B. C. D. 不能确定
如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证:AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=______.
某商场要经营一种新上市的文具,进价为20元/件。试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售数量就减少10件。
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大.
如图,在两建筑物之间有一根高15米的旗杆,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°.若旗杆底点G为BC的中点,则矮建筑物的高CD为( )
A. 20米 B. 10米 C. 15米 D. 5米