题目内容
一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.
若x=3是分式方程的根,则a的值是__________.
如图,E,F分别是菱形ABCD的边AB,AD的中点,且AB=5,AC=6.
(1)求对角线BD的长;
(2)求证:四边形AEOF为菱形.
在平面直角坐标系中,将正比例函数y=kx(k>0)的图象向上平移一个单位,那么平移后的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
学校计划从某苗木基地购进A、B两咱树苗共200棵绿化校园。已知购买了3棵A种树苗和5棵B种树苗共需700元;购买2棵A种树苗和1棵B种树苗共需280元.
(1)每棵A种树苗、B种树苗各需多少元?
(2)学校除支付购买树苗的费用外,平均每棵树苗还需支付运输及种植费用20元。设学校购买B种树苗x棵,购买两种树苗及运输、种植所需的总费用为y元,求y与x的函数关系;
(3)在(2)的条件下,若学校用于绿化的总费用在22400元限额内,且购买A种树苗的数量不少于B种树苗的数量,请给出一种费用最省的方案,并求出该方案所需的费用.
甲、乙、丙三名同学在本学期几次数学测验中,三人的平均成绩都是96分同,方差分别为:,,,则三人中成绩最稳定的是_______.
矩形、菱形、正方形都具有的性质是( )
A. 对角线相等 B. 对角线互相垂直 C. 对角线互相平分 D. 对角线平分对角
如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( )
A. 4S1 B. 4S2 C. 4S2+S3 D. 3S1+4S3
如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为_____.