题目内容
飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t﹣1.5t2,那么飞机着陆后滑行 秒能停下来.
如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为( )
A.6 B.12 C.32 D.64
如图:AB为的⊙0弦;点D和C在⊙0上;且有AD=BC,求证:△ABD≌△BAC.
函数y=中,自变量x的取值范围是 .
如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.
(1)求足球开始飞出到第一次落地时,该抛物线的解析式;
(2)足球第一次落地点C距守门员多少米?
如图,在平行四边形ABCD中,E在DC上,若BF:BE=4:7,则DE:EC= .
一辆汽车沿倾斜角α的斜坡前进800米,则它上升的高度是( )
A.800•sinα米 B.米 C.800•cosα米 D.米
将点A(﹣3,﹣2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A′,则点A′的坐标是 .
已知:如图,∠ABC和∠ACB的平分线交于点O,过点O作EF∥BC,交AB,AC于点E,F.
(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;
(2)若∠BEF+∠CFE=a,求∠BOC的度数.(用含a的代数式表示)