题目内容

已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,该抛物线的对称轴为x=-1,则下列结论中正确的是


  1. A.
    b+c<0
  2. B.
    9a-3b+c<0
  3. C.
    3a+c>0
  4. D.
    2a-b<0
C
分析:根据抛物线开口向下求出a<0,再根据图象,取x=1时的值求出b+c>-a,判断出A错误,根据二次函数对称性x=-3时的函数值与x=1时的函数值相同判断B错误,根据对称轴为直线x=-=-1对C、D作出判断.
解答:A、∵抛物线开口向下,
∴a<0,
∴-a>0,
由图可知,x=1时,y=a+b+c>0,
∴b+c>-a,
∴b+c>0,故本选项错误;
B、∵抛物线的对称轴为x=-1,
∴x=1与x=-3时的函数值相等,
∴9a-3b+c=a+b+c>0,故本选项错误;
C、∵抛物线对称轴为直线x=-=-1,
∴b=2a,
∴a+b+c=a+2a+c=3a+c>0,故本选项正确;
D、∵b=2a,
∴2a-b=0,故本选项错误.
故选C.
点评:本题考查了二次函数图象与系数的关系,一般利用对称轴的范围求2a与b的关系,取x的特殊值确定a、b、c的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网