题目内容
如图,在□ABCD中,点E,F分别在边AD、BC上,EF=2,∠DEF=60°将四边形EFCD沿EF翻折,得到四边形EFC’D’,ED’交BC于点G,则△GEF的周长为________.
如图,在Rt△ABC中,∠ACB = 90°,BC = 2.将△ABC绕顶点C逆时针旋转得到△A′B′C,使点B′落在AC边上.设M是A′B′的中点,连接BM,CM,则△BCM的面积为( )
A. 1 B. 2 C. 3 D. 4
如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为_____.
据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为( )
A. 0.8×1013 B. 8×1012 C. 8×1013 D. 80×1011
为响应市收府关于”垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解C:了解较少,D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)把两幅统计图补充完整;
(2)若该校学生数1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有________名;
(3)已知“非常了解”的4名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到1男1女的概率.
如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且C、D两点在函数y=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率是( ).
A. B. C. D.
如图是某几何体的左视图,则该几何体不可能是( ).
如图,点A在反比例函数y=图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且EC=AC,点D为OB的中点,若△ADE的面积为5,则k的值为( )
A. B. 10 C. D. 12
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.