题目内容

如图1,在矩形ABCD(AB<BC)的BC边上取一点E,使BA=BE,作∠AEF=90°,交AD于F点,易证EA=EF.

(1)如图2,若EF与AD的延长线交于点F,证明:EA=EF仍然成立;
(2)如图3,若四边形ABCD是平行四边形(AB<BC),在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点.则EA=EF是否成立?若成立,请说明理由.
(3)由题干和(1)(2)你可以得出什么结论.

(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,AD∥BC,
∵AB=BE,
∴∠AEB=∠FAE=45°,
∵∠AEF=90°,
∴∠FEC=180°-90°-45°=45°=∠AFE,
∴∠FAE=∠AFE,
∴EA=EF;

(2)解:EA=EF仍成立,
理由是:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B+∠BAD=180°,
∵BA=BE,
∴∠AEB=∠BAE=∠FAE,
∵∠AEF=∠ABE,∠AEB+∠AEF+∠FEC=180°,
∴∠FEC=∠AFE,
∴EA=EF;

(3)解:在任意四边形ABCD中,只要满足AB<BC,AD∥BC,在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点,一定可得EA=EF.
分析:(1)根据矩形性质得出∠B=90°,AD∥BC,求出∠AEB=∠FAE=45°,求出∠FEC=∠AFE=45°,推出∠FAE=∠AFE,即可得出答案;
(2)根据平行四边形性质得出AD∥BC,推出∠B+∠BAD=180°,求出∠AEB=∠BAE=∠FAE,推出∠FEC=∠AFE,根据等腰三角形的判定推出即可;
(3)根据(1)(2)得出在任意四边形ABCD中,只要满足AB<BC,AD∥BC,在BC边上取一点E,使BA=BE,作∠AEF=∠ABE,交AD于F点,一定可得EA=EF.
点评:本题考查了等腰三角形的判定,矩形的性质,平行四边形的性质,平行线的性质的应用,主要考查学生综合运用定理进行推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网