题目内容

在盒子里放有四张分别写有整式3x2-3,x2-x,x2+2x+1,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母.
(1)求能组成分式的概率;
(2)在抽取的能组成分式的卡片中,请你选择其中能进行约分的一个分式,并化简这个式.
【答案】分析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
解答:解:(1)四张分别写有整式3x2-3,x2-x,x2+2x+1,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母共有4×3=12种结果,其中以“2”作分母的3个,不能组成分式,故可以组成9个分式,能组成分式的概率为=
(2)答案不唯一.

=
其它:.(评分标准参上)
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.注意分母中含有字母的式子叫做分式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网