ÌâÄ¿ÄÚÈÝ
| 2 |
£¨1£©ÊÔÇó¡°Ë«Å×ÎïÏß¡±Öо¹ýµãA£¬E£¬BµÄÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Èç¹ûÒ»ÌõÖ±ÏßÓë¡°Ë«Å×ÎïÏß¡±Ö»ÓÐÒ»¸ö½»µã£¬ÄÇôÕâÌõÖ±Ïß½Ð×ö¡°Ë«Å×ÎïÏß¡±µÄÇÐÏߣ®Èô¹ýµãEÓëxÖáÆ½ÐеÄÖ±ÏßÓë¡°Ë«Å×ÎïÏß¡±½»ÓÚµãG£¬Çó¾¹ýµãGµÄ¡°Ë«Å×ÎïÏß¡±ÇÐÏߵĽâÎöʽ£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©ÒÑÖª¡÷APCµÄÃæ»ýºÍµãCµÄ×Ý×ø±ê£¬¼´¿ÉµÃµ½APµÄ³¤£¬½ø¶ø¿É¸ù¾ÝPµã×ø±ê£¬Çó³öA¡¢BµÄ×ø±ê£¬´Ó¶øÀûÓôý¶¨ÏµÊý·¨ÇóµÃ¹ýA¡¢E¡¢BÈýµãµÄÅ×ÎïÏß½âÎöʽ£®
£¨2£©ÓÉÓÚE¡¢G¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬Ò×ÇóµÃGµãµÄ×ø±ê£¬Éè³ö¾¹ýµãGµÄÇÐÏߵĽâÎöʽ£¬½«µãGµÄ×ø±ê´úÈë¸ÃÖ±ÏߵĽâÎöʽÖУ¬¼´¿ÉÏûÈ¥Ò»¸öδ֪Êý£¬È»ºóÁªÁ¢£¨1£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬ÓÉÓÚÁ½¸öº¯ÊýÖ»ÓÐÒ»¸ö½»µã£¬ÄÇôËùµÃ·½³ÌµÄ¸ùµÄÅбðʽ¡÷=0£¬¿É¾Ý´ËÇó³ö¸ÃÇÐÏߵĽâÎöʽ£®
£¨2£©ÓÉÓÚE¡¢G¹ØÓÚÅ×ÎïÏߵĶԳÆÖá¶Ô³Æ£¬Ò×ÇóµÃGµãµÄ×ø±ê£¬Éè³ö¾¹ýµãGµÄÇÐÏߵĽâÎöʽ£¬½«µãGµÄ×ø±ê´úÈë¸ÃÖ±ÏߵĽâÎöʽÖУ¬¼´¿ÉÏûÈ¥Ò»¸öδ֪Êý£¬È»ºóÁªÁ¢£¨1£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬ÓÉÓÚÁ½¸öº¯ÊýÖ»ÓÐÒ»¸ö½»µã£¬ÄÇôËùµÃ·½³ÌµÄ¸ùµÄÅбðʽ¡÷=0£¬¿É¾Ý´ËÇó³ö¸ÃÇÐÏߵĽâÎöʽ£®
½â´ð£º½â£º£¨1£©¡ßS¡÷ACP=
AP•|yC|=1£¬ÓÉÌâÒâÖª£º|yC|=1£¬
¡àAP=2£¬¼´A£¨-3£¬0£©£»
ÓÉÓÚA¡¢B¹ØÓÚµãP¶Ô³Æ£¬ÔòB£¨1£¬0£©£»
Éè¾¹ýA¡¢E¡¢BµÄÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x+3£©£¨x-1£©£¬ÔòÓУº
a£¨0+3£©£¨0-1£©=-3£¬a=1£¬
¹ÊËùÇóÅ×ÎïÏߵĽâÎöʽΪ£ºy=£¨x+3£©£¨x-1£©=x2+2x-3£®
£¨2£©ÓÉÓÚEG¡ÎxÖᣬÔòE¡¢G¹ØÓÚÖ±Ïßx=-1¶Ô³Æ£¬¹ÊG£¨-2£¬-3£©£»
Éè¾¹ýµãGµÄ¡°Ë«Å×ÎïÏß¡±µÄÇÐÏߵĽâÎöʽΪ£ºy=kx+b£¬
ÔòÓУº-2k+b=-3£¬b=2k-3£»
¡ày=kx+2k-3£»
ÓÉÓÚGµãͬʱÔÚÇÐÏߺÍÅ×ÎïÏßµÄͼÏóÉÏ£¬
ÔòÓУºx2+2x-3=kx+2k-3£¬
¼´x2+£¨2-k£©x-2k=0£¬
ÓÉÓÚÁ½¸öº¯ÊýÖ»ÓÐÒ»¸ö½»µã£¬Ôò£º
¡÷=£¨2-k£©2+8k=0£¬
½âµÃk=-2£»
¹ÊËùÇóÇÐÏߵĽâÎöʽΪ£ºy=-2x-7£®
| 1 |
| 2 |
¡àAP=2£¬¼´A£¨-3£¬0£©£»
ÓÉÓÚA¡¢B¹ØÓÚµãP¶Ô³Æ£¬ÔòB£¨1£¬0£©£»
Éè¾¹ýA¡¢E¡¢BµÄÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x+3£©£¨x-1£©£¬ÔòÓУº
a£¨0+3£©£¨0-1£©=-3£¬a=1£¬
¹ÊËùÇóÅ×ÎïÏߵĽâÎöʽΪ£ºy=£¨x+3£©£¨x-1£©=x2+2x-3£®
£¨2£©ÓÉÓÚEG¡ÎxÖᣬÔòE¡¢G¹ØÓÚÖ±Ïßx=-1¶Ô³Æ£¬¹ÊG£¨-2£¬-3£©£»
Éè¾¹ýµãGµÄ¡°Ë«Å×ÎïÏß¡±µÄÇÐÏߵĽâÎöʽΪ£ºy=kx+b£¬
ÔòÓУº-2k+b=-3£¬b=2k-3£»
¡ày=kx+2k-3£»
ÓÉÓÚGµãͬʱÔÚÇÐÏߺÍÅ×ÎïÏßµÄͼÏóÉÏ£¬
ÔòÓУºx2+2x-3=kx+2k-3£¬
¼´x2+£¨2-k£©x-2k=0£¬
ÓÉÓÚÁ½¸öº¯ÊýÖ»ÓÐÒ»¸ö½»µã£¬Ôò£º
¡÷=£¨2-k£©2+8k=0£¬
½âµÃk=-2£»
¹ÊËùÇóÇÐÏߵĽâÎöʽΪ£ºy=-2x-7£®
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬Öص㿼²éÁ˶þ´Îº¯ÊýµÄ¶Ô³ÆÐÔ¡¢¶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢º¯ÊýͼÏó½»µã×ø±êµÄÇó·¨ÒÔ¼°¸ùµÄÅбðʽµÈÖØÒªÖªÊ¶£¬Éæ¼°µÄÖªÊ¶Ãæ¹ã£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁе÷²é·½Ê½ÖУ¬ÊÊÒ˲ÉÓÃÆÕ²é·½Ê½µÄÊÇ£¨¡¡¡¡£©
| A¡¢µ÷²éÒ»ÅúÅ£Ä̵ÄÖÊÁ¿ |
| B¡¢µ÷²éÖØÇìÊÐÖÐѧÉúÉÏÍøµÄÇé¿ö |
| C¡¢µ÷²éº½Ìì·É´¬Éϸ÷Áã¼þµÄÖÊÁ¿ |
| D¡¢µ÷²éÍòÖÝÇøÑ§ÉúÿÌìÌåÓý¶ÍÁ¶Ê±¼ä |
¼ÆËã
+
+
+
=£¨¡¡¡¡£©
| x-y |
| x+y |
| y-z |
| y+z |
| z-x |
| z+x |
| (x-y)(y-z)(z-x) |
| (x+y)(y+z)(z+x) |
| A¡¢-1 | B¡¢0 | C¡¢1 | D¡¢2 |