题目内容
【题目】为了出行方便,现在很多家庭都购买了小汽车.又由于能源紧张和环境保护,石油的市场价格常常波动.为了在价格的波动中尽可能减少损失,常常有两种加油方案.
方案一:每次加50元的油.方案二:每次加50升的油.
请同学们以2次加油为例(第一次油价为a元/升,第二次油价为b元/升,a>0,b>0且a≠b),计算这两种方案中,哪种加油方案更实惠便宜(平均单价小的便宜)?
【答案】方案一实惠便宜,理由见解析.
【解析】
首先根据单价=总价÷数量分别表示出2次加油的平均单价,然后对这两次平均单价进行减法运算即可.
解:方案一前后两次加油的平均单价为:
,
方案二前后两次加油的平均单价为:(50a+50b)÷(50+50)=
,
∴
,
∵a>0,b>0,
∴2(a+b)>0
又a≠b,
,
,
,
∴方案一实惠便宜.
【题目】某年级共有300名学生,为了解该年级学生在
,
两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.
收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:
项目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74
项目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75
整理、描述数据
项目的频数分布表
分组 | 划记 | 频数 |
| — | 1 |
|
| 2 |
|
| 2 |
|
| 8 |
| ||
|
| 5 |
(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)
根据以上信息,回答下列问题:
(1)补全统计图、统计表;
(2)在此次测试中,成绩更好的项目是__________,理由是__________;
(3)假设该年级学生都参加此次测试,估计
项目和
项目成绩都是优秀的人数最多为________人.
![]()