题目内容

(2013•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=
25°
25°
分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE-∠F=∠BCE+∠ACB-∠F,继而求得答案.
解答:解:∵AB=AC,∠A=90°,
∴∠ACB=∠B=45°,
∵∠EDF=90°,∠E=30°,
∴∠F=90°-∠E=60°,
∵∠ACE=∠CDF+∠F,∠BCE=40°,
∴∠CDF=∠ACE-∠F=∠BCE+∠ACB-∠F=45°+40°-60°=25°.
故答案为:25°.
点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网