题目内容
如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有
- A.1个
- B.2个
- C.3个
- D.无数个
A
分析:根据长方形的中心对称性,可得要旋转长方形ABCD能和长方形CDEF重合,必须以CD的中点为旋转中心,进而可得答案.
解答:根据长方形的性质,对角线互相平分且相等,
所以对角线的交点是长方形的对称中心;
故长方形ABFE的对称中心是其对角线的交点,即CD的中点;
进而可得:可以作为旋转中心的点只有CD的中点.
故选A.
点评:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
分析:根据长方形的中心对称性,可得要旋转长方形ABCD能和长方形CDEF重合,必须以CD的中点为旋转中心,进而可得答案.
解答:根据长方形的性质,对角线互相平分且相等,
所以对角线的交点是长方形的对称中心;
故长方形ABFE的对称中心是其对角线的交点,即CD的中点;
进而可得:可以作为旋转中心的点只有CD的中点.
故选A.
点评:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
练习册系列答案
相关题目