题目内容
(本题8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D。
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数。
2014年“十一”期间,鸣沙山·月牙泉接待93000人次,用科学计数法表示为_______人次。
(9分)如图,△ABC中,∠C=90°
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)在(1)条件下,连结BD,当BC=3cm,AB=5cm时,求△BCD的周长.
若三角形三边的长为下列各组数,则其中是直角三角形的是( ).
A.3,3,3 B.5,6,8
C.4,5,6 D.5,12,13
(本题12分)如图,抛物线交轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线MF。
(1)求点A,M的坐标;
(2)当BD为何值时,点F恰好落在抛物线上?
(3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上;
②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=
已知扇形的圆心角为120°,弧长为,则它的半径为 .
若关于的一元二次方程有两个相等实数根,则的值是( )
A.-1 B.1 C.-4 D.4
某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.
A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.