题目内容
如图,已知, , , ,试猜想与的位置关系并说明理由.
某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O.
(1)若∠EOF=54°,求∠AOC的度数;
(2)①在∠AOD的内部作射线OG⊥OE;
②试探索∠AOG与∠EOF之间有怎样的关系?并说明理由.
如图,下列推理及括号中所注明的推理依据错误的是( )
A. ∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)
B. ∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)
C. ∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)
D. ∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)
已知抛物线.
(1)求证:无论为任何实数,抛物线与轴总有两个交点;
(2)若A、B是抛物线上的两个不同点,求抛物线的表达式和的值;
(3)若反比例函数的图象与(2)中的抛物线在第一象限内的交点的横坐标为,且满足2<<3,求k的取值范围.
如图,尺规作图作的平分线,方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画孤,两弧交于点,作射线,由作法得≌的根据是:__________;
如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要利用“SSS”证明△ABC≌△FDE,还可以添加的一个条件是( )
A. AD=FB B. DE=BD C. BF=DB D. 以上都不对
如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于______
(1)计算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法计算结果很简单,由此又发现一个新的乘法公式: _________________________(请用含a、b的字母表示)
(3)下列各式能用你发现的乘法公式计算的是( )
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式计算: =