题目内容
如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .
31
要使式子有意义,则m的取值范围是( )
A.m>﹣1 B. m≥﹣1 C. m>﹣1且m≠1 D. m≥﹣1且m≠1
如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
ABC.D
计算的结果是
A. -3 B.3 C.-9 D.9
使有意义的的取值范围是 .
解分式方程 .
已知二次函数,其图像抛物线交轴的于点A(1,0)、B(3,0),交y轴于点C.直线过点C,且交抛物线于另一点E(点E不与点A、B重合).
(1)求此二次函数关系式;
(2)若直线经过抛物线顶点D,交轴于点F,且∥,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.
(3)若过点A作AG⊥轴,交直线于点G,连OG、BE,试证明OG∥BE.
小李和小陆沿同一条路行驶到B地,他们离出发地的距离S和行驶时间t之间的函数关系的图象如图所示.已知小李离出发地的距离S和行驶时间t之间的函数关系为.则①小陆离出发地的距离S和行驶时间t之间的函数关系为: ;②他们相遇的时间 .
如图,能判定EB∥AC的条件是( )
A.∠C=∠ABE B. ∠A=∠EBD C. ∠C=∠ABC D. ∠A=∠ABE