题目内容

如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE=   
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=    时,⊙C与直线AB相切.
【答案】分析:(1)求出BC,AC的值,推出DE为三角形ABC的中位线,求出即可;
(2)求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.
解答:解:(1)∵∠C=90°,∠A=30°,
∴BC=AB=2,AC=6,
∵∠C=90°,DE⊥AC,
∴DE∥BC,
∵D为AC中点,
∴E为AB中点,
∴DE=BC=
故答案为:

(2)过C作CH⊥AB于H,
∵∠ACB=90°,BC=2,AB=4,AC=6,
∴由三角形面积公式得:BC•AC=AB•CH,
CH=3,
分为两种情况:①如图1,
∵CF=CH=3,
∴AF=6-3=3,
∵A和F关于D对称,
∴DF=AD=
∵DE∥BC,
∴△ADE∽△ACB,
=
=
DE=
②如图2,∵CF=CH=3,
∴AF=6+3=9,
∵A和F关于D对称,
∴DF=AD=4.5,
∵DE∥BC,
∴△ADE∽△ACB,
=
=
DE=
故答案为:
点评:本题考查了三角形的中位线,含30度角的直角三角形性质,相似三角形的性质和判定等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网