题目内容
如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.
求证:OE=OF.
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,
∴∠OAE=∠OCF,
∵在△OAE和△OCF中,
,
∴△OAE≌△OCF(ASA),
∴OE=OF.
分析:由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易证得△OAE≌△OCF,则可得OE=OF.
点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
∴OA=OC,AB∥CD,
∴∠OAE=∠OCF,
∵在△OAE和△OCF中,
∴△OAE≌△OCF(ASA),
∴OE=OF.
分析:由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易证得△OAE≌△OCF,则可得OE=OF.
点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |