题目内容
已知:AB=AD,BC=DE,AC=AE,试说明:∠1=∠2.
证△ABC≌△ADE(3分) 证∠1=∠2(3分)
如图,已知:AB=AD,D是BC中点,E是AD上任意一点,连接EB、EC,求证:EB=EC.
分析:(1)观察图形,图中线段EB和线段EC是________三角形中的边.现需证EB=EC,可证△ABE≌________或△BED≌________.
(2)由已知可得BD=CD,不要忽略图形中隐含的已知条件AE、DE、AD是三对全等三角形的公共边.
(3)找需知,只需证得∠BAE=∠CAE或∠BDE=∠CDE,即可得到上述两个三角形全等(恰当选择SAS来判定).
(4)再看已知,三组对应边对应相等,可以利用SSS来证明△ABD≌△ACD,就得到∠BAE=∠CAE或∠BDE=∠CDE.
请同学们完成下列填空
证明一:∵D是BC中点 ∴BD=CD
在△ABD和△ACD中,
________
∴△ABD≌△ACD(SSS)
∴∠BAE=∠CAE(全等三角形的对应角相等)
在△ABE和△ACE中,
∴△ABE≌△ACE(SAS)
∴EB=EC(全等三角形的对应边相等)
(请同学们根据分析思路,写出第二种证明方法)
.
如图,已知,AB=AD,BC=CD,AC、BD相交于E,由这些条件可以得出若干结论,请你写出三个正确的结论(不要添加字母和辅助线,不要证明).
结论1:
结论2:
结论3:
如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.请解决下列问题:【小题1】命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;【小题2】画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).【小题3】试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系