题目内容
【题目】如图,矩形
在平面直角坐标系中,
,
,把矩形
沿直线
对折使点
落在点
处,直线
与
的交点分别为
,点
在
轴上,点
在坐标平面内,若四边形
是菱形,则菱形
的面积是( )
![]()
A.
B.
C.
D. ![]()
【答案】C
【解析】
如图,连接AD,根据勾股定理先求出OC的长,然后根据折叠的性质以及勾股定理求出AD、DF的长,继而作出符合题意的菱形,分别求出菱形的两条对角线长,然后根据菱形的面积等于对角线积的一半进行求解即可.
如图,连接AD,
∵∠AOC=90°,AC=5,AO=3,
∴CO=
=4,
∵把矩形
沿直线
对折使点
落在点
处,
∴∠AFD=90°,AD=CD,CF=AF=
,
设AD=CD=m,则OD=4-m,
在Rt△AOD中,AD2=AO2+OD2,
∴m2=32+(4-m)2,
∴m=
,
即AD=
,
∴DF=
=
=
,
如图,过点F作FH⊥OC,垂足为H,延长FH至点N,使HN=HF,在HC上截取HM=HD,则四边形MFDN即为符合条件的菱形,
由题意可知FH=
,
∴FN=2FH=3,DH=
,
∴DM=2DH=
,
∴S菱形MFDN=
,
故选C.
![]()
练习册系列答案
相关题目