题目内容

一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.
【答案】分析:(1)由一个不透明的布袋里装有3个球,其中2个红球,1个白球,根据概率公式直接求解即可求得答案;
(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;
(3)根据概率公式列方程,解方程即可求得n的值.
解答:解:(1)∵一个不透明的布袋里装有3个球,其中2个红球,1个白球,
∴摸出1个球是白球的概率为

(2)画树状图、列表得:
第二次
第一次 
白 红1 红2 
 白 白,白 白,红1 白,红2
 红1 红1,白 红1,红1 红1,红2
 红2 红2,白 红2,红1 红2,红2
∴一共有9种等可能的结果,两次摸出的球恰好颜色不同的有4种,
∴两次摸出的球恰好颜色不同的概率为

(3)由题意得:
解得:n=4.
经检验,n=4是所列方程的解,且符合题意,
∴n=4.
点评:此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网