题目内容
计算:①
+
=
,②
-
=
,③(-
)2=
,④
-
=
,⑤
+
=
=
;
,⑦
-
=
+
=
| 2 |
| a |
| 3 |
| a |
| 5 |
| a |
| 5 |
| a |
| b |
| a |
| c |
| b |
| b2-ac |
| ab |
| b2-ac |
| ab |
| 3b |
| 2a |
| 9b2 |
| 4a2 |
| 9b2 |
| 4a2 |
| 1 |
| x |
| 1 |
| y |
| y-x |
| xy |
| y-x |
| xy |
| 2a |
| a-b |
| a+b |
| b-a |
1
1
⑥| x2-1 |
| (x+1)2 |
| () |
| x+1 |
| x-1 |
| x+1 |
| x-1 |
| x+1 |
| a2 |
| a+3 |
| 9 |
| a+3 |
a-3
a-3
;⑧| a |
| a-b |
| b |
| b-a |
1
1
.分析:①利用同底数的分式的加法法则即可求解;
②首先通分,然后相减即可;
③利用分式的乘方法则即可求解;
④首先通分,然后相减即可;
⑤首先通分,然后相减即可;
⑥首先把分子进行分解因式,然后约分;
⑦用同底数的分式的加法法则即可求解;
⑧用同底数的分式的加法法则即可求解.
②首先通分,然后相减即可;
③利用分式的乘方法则即可求解;
④首先通分,然后相减即可;
⑤首先通分,然后相减即可;
⑥首先把分子进行分解因式,然后约分;
⑦用同底数的分式的加法法则即可求解;
⑧用同底数的分式的加法法则即可求解.
解答:解:①
+
=
,
②
-
=
,
③(-
)2=
,
④
-
=
,
⑤
+
=
=
=1;
⑥
=
=
,
⑦
-
=
=
=a-3;
⑧
+
=
-
=
=1.
故答案是:
,
,
,
,
,1,a-3,1.
| 2 |
| a |
| 3 |
| a |
| 5 |
| a |
②
| b |
| a |
| c |
| b |
| b2-ac |
| ab |
③(-
| 3b |
| 2a |
| 9b2 |
| 4a2 |
④
| 1 |
| x |
| 1 |
| y |
| y-x |
| xy |
⑤
| 2a |
| a-b |
| a+b |
| b-a |
| 2a-a-b |
| a-b |
| a-b |
| a-b |
⑥
| x2-1 |
| (x+1)2 |
| (x+1)(x-1) |
| (x+1)2 |
| x-1 |
| x+1 |
⑦
| a2 |
| a+3 |
| 9 |
| a+3 |
| a2-9 |
| a+3 |
| (a+3)(a-3) |
| a+3 |
⑧
| a |
| a-b |
| b |
| b-a |
| a |
| a-b |
| b |
| a-b |
| a-b |
| a-b |
故答案是:
| 5 |
| a |
| b2-ac |
| ab |
| 9b2 |
| 4a2 |
| y-x |
| xy |
| x-1 |
| x+1 |
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目