题目内容
因式分解:=
如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).
某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是
A.94分,96分 B.96分,96分
C.94分,96.4分 D.96分,96.4分
如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF = BC.
求证:(1)DF = AE;
(2)DE⊥AC
化简的结果是
A. B. C. D.
实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示。若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm
某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。
(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?
(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积。
如图5,中,DE是BC的垂直平分线,DE交AC于点E, 连接BE,若BE=9,BC=12,则cosC= * .
如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是………………………………………………( )
A、AD=BD; B、OD=CD;
C、∠CAD=∠CBD; D、∠OCA=∠OCB.