题目内容
(2000•河北)已知:如图,AB是⊙O的弦,半径OC交弦AB于点P,且AB=10cm,PB=4cm,PC=2cm,则OC的长等于 cm.
【答案】分析:根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.
解答:
解:延长CO交⊙O于点D,
∵AB=10cm,PB=4cm
∴PA=AB-PB=6cm
∵PC=2cm
∴PD=2CO-2
由相交弦定理得,PA•PB=PC•PD
即:6×4=2×(2CO-2),解得CO=7cm.
点评:本题主要考查相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”的应用.
解答:
∵AB=10cm,PB=4cm
∴PA=AB-PB=6cm
∵PC=2cm
∴PD=2CO-2
由相交弦定理得,PA•PB=PC•PD
即:6×4=2×(2CO-2),解得CO=7cm.
点评:本题主要考查相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”的应用.
练习册系列答案
相关题目