题目内容
如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于
- A.1.5cm
- B.2cm
- C.3cm
- D.4cm
B
分析:能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷2,得到圆锥的弧长=2扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷2π求解.
解答:∵圆锥的弧长=2×12π÷6=4π,
∴圆锥的底面半径=4π÷2π=2cm,故选B.
点评:解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.
分析:能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷2,得到圆锥的弧长=2扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷2π求解.
解答:∵圆锥的弧长=2×12π÷6=4π,
∴圆锥的底面半径=4π÷2π=2cm,故选B.
点评:解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.
练习册系列答案
相关题目