题目内容

如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=
0.8cm
0.8cm
分析:求出∠E=∠ADC=∠BCA=90°,求出∠BCE=∠CAD,根据AAS证△ACD≌△CBE,推出CE=AD=2.5cm,BE=CD,即可得出答案.
解答:解:∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠E=∠ADC=∠BCA=90°,
∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,
∴∠BCE=∠CAD,
在△ACD和△CBE中,
∠CAD=∠BCE
∠ADC=∠E
AC=BC

∴△ACD≌△CBE(AAS),
∴CE=AD=2.5cm,BE=CD,
∵DE=1.7cm,
∴BE=CD=2.5cm-1.7cm=0.8cm,
故答案为:0.8cm.
点评:本题考查了三角形的内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网