题目内容

(2013•南通二模)如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为
2
2
-2
2
2
-2
分析:过E作EM⊥AB于M,根据正方形性质得出AO⊥BD,AO=OB=OC=OD,由勾股定理得出2AO2=22,求出AO=OB=
2
,在Rt△BME中,由勾股定理得:2ME2=BE2,求出即可.
解答:解:过E作EM⊥AB于M,
∵四边形ABCD是正方形,
∴AO⊥BD,AO=OB=OC=OD,
则由勾股定理得:2AO2=22
AO=OB=
2

∵EM⊥AB,BO⊥AO,AE平分∠CAB,
∴EM=EO,
由勾股定理得:AM=AO=
2

∵正方形ABCD,
∴∠MBE=45°=∠MEB,
∴BM=ME=OE,
在Rt△BME中,由勾股定理得:2ME2=BE2
即2(2-
2
2=BE2
BE=2
2
-2,
故答案为:2
2
-2.
点评:本题考查了角平分线性质和正方形性质,勾股定理的应用,注意:角平分线上的点到线段两个端点的距离相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网