题目内容
如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.
证明:∵△ABC是等腰直角三角形,CH⊥AB,
∴AC=BC,∠ACH=∠CBA=45°.
∵CH⊥AB,AE⊥CF,
∴∠EDH+∠HGE=180°.
∵∠AGC=∠HGE,∠HDE+∠CDB=180°,
∴∠AGC=∠CDB.
在△AGC和△CDB中,
,
∴△AGC≌△CDB(AAS).
∴BD=CG.
分析:由等腰直角三角形的性质知,AC=BC,∠ACH=∠CBA=45°,故由AAS得△AGC≌△CDB?CG=CG.
点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质.
∴AC=BC,∠ACH=∠CBA=45°.
∵CH⊥AB,AE⊥CF,
∴∠EDH+∠HGE=180°.
∵∠AGC=∠HGE,∠HDE+∠CDB=180°,
∴∠AGC=∠CDB.
在△AGC和△CDB中,
∴△AGC≌△CDB(AAS).
∴BD=CG.
分析:由等腰直角三角形的性质知,AC=BC,∠ACH=∠CBA=45°,故由AAS得△AGC≌△CDB?CG=CG.
点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质.
练习册系列答案
相关题目
①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
| A、①②③ | B、①④⑤ | C、①③④ | D、③④⑤ |