题目内容

作业宝如图,已知△ABC是等边三角形,AB=6,点D在AC上,AD=2CD,CM是∠ACB的外角平分线,连接BD并延长与CM交于点E.
(1)求CE的长;
(2)求∠EBC的正切值.

解:(1)在BC延长线上取一点F,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,AB=BC=6,∠ACF=120°,
∵CM是∠ACB的外角平分线,
∴∠ECF=∠ACF=60°,
∴∠ECF=∠ABC,
∴CE∥AB,
=
又∵AD=2CD,AB=6,
=
∴CE=3.

(2)过点E作EH⊥BC于点H.
∵∠ECF=60°,∠EHC=90°,CE=3,
∴CH=3,EH=
又∵BC=6,
∴BH=BC+CH=
∵∠EHB=90°,
∴tan∠EBC==
分析:(1)首先证明CE∥AB,则△ABD∽△CED,根据相似三角形的对应边的比相等即可求解;
(2)过点E作EH⊥BC于点H,在直角△CEH中,利用三角函数求得CH和EH的长度,即可求得BH的大小,即可求得三角函数值.
点评:本题考查了相似三角形的判定与性质,以及三角函数值的求法,求三角函数值的问题常用的方法是转化为求直角三角形的边的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网