题目内容
用四舍五入按要求对分别取近似值,其中错误的是( )
A. 0.1(精确到0.1) B. 0.06(精确到千分位)
C. 0.06(精确到百分位) D. 0.0602(精确到0.0001)
已知点A(-8,0)及动点P(x,y),且2x-y=-6.设三角形OPA的面积为S.
(1)当x=-2时,点P坐标是____________;
(2)若点P在第二象限,且x为整数时,求y的值;
(3)是否存在第一象限的点P,使得S=12.若存在,求点P的坐标;若不存在,
说明理由.
用配方法解一元二次方程2x2-4x-2=1的过程中,变形正确的是( )
A. 2(x-1)2=1 B. 2(x-1)2=5 C. (x-1)2= D. (x-2)2=
若单项式mx2y与单项式5xny的和是﹣3x2y,则m+n=_____.
若x2+x+1的值是8,则4x2+4x+9的值是( )
A. 37 B. 25 C. 32 D. 0
如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;
(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是( )
A. B. C. D.
在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A,B,C,D表示)
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.