题目内容
已知点P(﹣1,4)在反比例函数(k≠0)的图象上,则k的值是( )
A. B. C.4 D.﹣4
有一副直角三角板,在三角板ABC中,∠BAC=90°,∠C=60°,AB=6,在三角板DEF中,∠FDE=90°,∠E=45°,EF=6.将这副直角三角板按如图1所示位置摆放,点A与点F重合,点E、F、A、C在同一条直线上.现固定三角板ABC,将三角板DEF以每秒1个单位的速度沿边AC匀速运动,DF与AB相交于点M.
(1)如图2,连接ME,若∠EMA=67.5°,求证:△DEM≌△AEM;
(2)如图3,在三角板DEF移动的同时,点N从点C出发,以每秒2个单位长度的速度沿CB向点B匀速移动,当三角板DEF的顶点D移动到AB边上时,三角板DEF停止移动,点N也随之停止移动.连接FN,设四边形AFNB的面积为y,在三角板DEF运动过程中,y存在最小值,请求出y的最小值;
(3)在(2)的条件下,在三角板DEF运动过程中,是否存在某时刻,使E、M、N三点共线,若存在,请直接写出此时AF的长;若不存在,请直接回答.
如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )
A.8 B.16 C.10 D.20
计算:(﹣)﹣1﹣|﹣1|+2sin60°+(π﹣4)0.
如图,在?ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于( )
A.2 B.3 C.4 D.5
已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.
(1)求证:n+4m=0;
(2)求m、n的值;
(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.
已知:如图,在?ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.求证:△DOE≌△BOF.
﹣1的绝对值是( )
A. ﹣1 B. 1 C. 0 D. ±1
如图,△ABC的三个顶点的坐标分别为A(-3,5),B(-3,0),C(2,0),将△ABC绕点B顺时针旋转一定的角度后得到△DBE,且使点D落在y轴上,与此同时顶点E恰好落在y=的图象上,则k的值为( )
A.-3 B.-4 C.-5 D.-3