题目内容
如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.
实践与操作:
根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).
(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE、CF.
猜想并证明:
判断四边形AECF的形状并加以证明.
![]()
(1)
(2)猜想:四边形AECF是菱形
证明:∵AB=AC ,AM平分∠CAD
∴∠B=∠ACB,∠CAD=2∠CAM
∵∠CAD是△ABC的外角
∴∠CAD=∠B+∠ACB
∴∠CAD=2∠ACB ∴∠CAM=∠ACB
∴AF∥CE
∵EF垂直平分AC ∴OA=OC, ∠AOF=∠COE=![]()
∴AOF≌△COE ∴AF=CE
在四边形AECF中,AF∥CE,AF=CE
∴四边形AECF是平行四边形
又∵EF⊥AC ∴四边形AECF是菱形
练习册系列答案
相关题目