题目内容
如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E.
(1)求证:AD∥OC;
(2)若AE=2,CE=2.求⊙O的半径和线段BE的长.
若x=2是方程2x+m-1=5的解,则m=__________.
如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?
二次函数y=ax2+bx-c与一次函数y=ax+c在同一直角坐标系中图象大致是( )
二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=-1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=-1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
解方程:4t2-(t+1)2=0.
某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是 .
解方程
(1)x2+2x-2=0
(2)(x+2)2-10(x+2)+25=0.
在Rt△ABC中, ∠C=Rt∠ ,AC=3cm, AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是( )
A、点A在圆C内,点B在圆C外
B、点A在圆C外,点B在圆C内
C、点A在圆C上,点B在圆C外
D、点A在圆C内,点B在圆C上