题目内容
先化简,再求值.
(1)
-
÷
,其中x=
-2.
(2)y=
+
+
,求代数式
-
的值.
(1)
| x |
| x+2 |
| x2+2x+1 |
| x+2 |
| x2-1 |
| x-1 |
| 3 |
(2)y=
| 1-8x |
| 8x-1 |
| 1 |
| 2 |
|
|
分析:(1)先将除法转化为乘法,再按照混合运算的顺序,先算乘法,再算减法,将式子化到最简,然后将x=
-2代入,计算即可求解;
(2)先根据二次根式的被开方数的非负性求出x的值,得到y的值,再将所求式子化简,然后将x、y的值代入,计算即可求解.
| 3 |
(2)先根据二次根式的被开方数的非负性求出x的值,得到y的值,再将所求式子化简,然后将x、y的值代入,计算即可求解.
解答:解:(1)
-
÷
=
-
•
=
-
=-
,
当x=
-2时,原式=-
=-
;
(2)由题意,可知
,
解得x=
,
∴y=
+
+
=
.
∵
-
=
-
=
-
=
,
当x=
,y=
时,
原式=
=16×
=4.
| x |
| x+2 |
| x2+2x+1 |
| x+2 |
| x2-1 |
| x-1 |
=
| x |
| x+2 |
| (x+1)2 |
| x+2 |
| x-1 |
| (x+1)(x-1) |
=
| x |
| x+2 |
| x+1 |
| x+2 |
=-
| 1 |
| x+2 |
当x=
| 3 |
| 1 | ||
|
| ||
| 3 |
(2)由题意,可知
|
解得x=
| 1 |
| 8 |
∴y=
| 1-8x |
| 8x-1 |
| 1 |
| 2 |
| 1 |
| 2 |
∵
|
|
=
|
|
=
| x+y |
| xy |
| xy |
| x-y |
| xy |
| xy |
=
| 2 |
| x |
| xy |
当x=
| 1 |
| 8 |
| 1 |
| 2 |
原式=
| 2 | ||
|
|
| 1 |
| 4 |
点评:本题考查了分式与二次根式的化简求值,正确进行运算,将所求式子化到最简是解题的关键,同时考查了二次根式的性质.
练习册系列答案
相关题目