题目内容
【题目】如图,在数轴上有A,B两点,且AB=8,点A表示的数为6;动点P从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,点Q从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,设运动时间为t秒.
![]()
(1)写出数轴上点B表示的数是 ;
(2)当t=2时,线段PQ的长是 ;
(3)当0<t<3时,则线段AP= ;(用含t的式子表示)
(4)当PQ=
AB时,求t的值.
【答案】(1)14;(2)4;(3)6﹣2t;(4)t的值是4或8
【解析】
(1)根据两点间的距离公式即可求出数轴上点B表示的数;
(2)先求出当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,再根据两点间的距离公式即可求出PQ的长;
(3)先求出当0<t<3时,P点对应的有理数为2t<6,再根据两点间的距离公式即可求出AP的长;
(4)由于t秒时,P点对应的有理数为2t,Q点对应的有理数为6+t,根据两点间的距离公式得出PQ=|2t﹣(6+t)|=|t﹣6|,根据PQ
AB列出方程,解方程即可求解.
(1)6+8=14.
故数轴上点B表示的数是14;
(2)当t=2时,P点对应的有理数为2×2=4,Q点对应的有理数为6+1×2=8,
8﹣4=4.
故线段PQ的长是4;
(3)当0<t<3时,P点对应的有理数为2t<6,
故AP=6﹣2t;
(4)根据题意可得:
|t﹣6|
8,
解得:t=4或t=8.
故t的值是4或8.
练习册系列答案
相关题目